Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (July 1995), pp. 29-38

Software Caching and Computation Migration in Olden

Martin C. Carlisle* and Anne Rogers
Princeton University

{mcc,amr}@cs.princeton.edu

Abstract

The goal of the Olden project is to build a system
that provides parallelism for general purpose C pro-
grams with minimal programmer annotations. We fo-
cus on programs using dynamic structures such as trees,
lists, and DAGs. We demonstrate that providing both
software caching and computation migration can im-
prove the performance of these programs, and provide
a compile-time heuristic that selects between them for
each pointer dereference. We have implemented a pro-
totype system on the Thinking Machines CM-5. We
describe our implementation and report on experiments
with ten benchmarks.

1 Introduction

Olden is a continuing project whose goals are build-
ing a compiler and runtime system for C programs
on distributed-memory SPMD machines, and automati-
cally detecting parallelism and inserting communication
as much as possible. We focus specifically on programs
using recursive data structures. To date, little work has
been done to address the problem of supporting these
programs. Although work has been done on supporting
SPMD execution of array-based programs, these tech-
niques do not extend to programs using recursive struc-
tures, because they rely on the fact that arrays are stat-
ically defined and directly addressable. Recursive data
structures, however, are dynamically defined and must
be recursively traversed to be addressable.

In prior work [28], we introduced a new execution
model for supporting programs that use pointer-based

*Supported, in part, by a National Science Foundation Gradu-
ate Fellowship, the Fannie and John Hertz Foundation, and NSF
FAW award MIP-9023542.

dynamic structures and described results on a prelimi-
nary implementation. That model used a simple mech-
anism for migrating the thread of control based on the
layout of heap-allocated data and introduced parallelism
using a technique based on futures and lazy task cre-
ation [16, 25]. Although we observed good performance
on several benchmarks, we noticed that the model per-
formed poorly in situations where the results of subcom-
putations on different processors were being merged. In
these situations, the thread of computation tended to
“ping-pong” between the two processors, and the resul-
tant communication cost outweighed the available par-
allelism.

We, as have other researchers [17, 26], determined
that both computation migration and caching need to
be supported to provide good performance. Computa-
tion migration takes advantage of the spatial locality of
nearby objects in the data structure; while caching takes
advantage of temporal locality and also allows multiple
objects on different processors to be accessed more ef-
ficiently. Unlike other projects, where the selection be-
tween mechanisms must be made by the programmer,
Olden provides a compile-time heuristic that selects, for
each pointer dereference, the appropriate mechanism to
be used. To assist the compiler in making this choice,
we provide an extension to the language, path-affinities,
that gives information about the expected layout of the
data.

Since distributed-memory machines do not support
caching directly, we implemented a software caching
scheme. Our caching method relies on the insertion of
pointer test code by the compiler and uses active mes-
sages [31] for communication between processors. We
maintain coherence using a local invalidation scheme
where the cache is cleared at certain synchronization
points.

In Section 2, we give a brief overview of the Olden
programming model, and in Section 3, describe Olden’s
computation migration and software caching mecha-
nisms. In Section 4, we introduce path-affinities and
the heuristic used by the compiler to choose between
computation migration and software caching. In Sec-

tion 5, we report results for ten benchmarks using our
implementation on the Thinking Machines CM-5, and
then, in Section 6, contrast Olden with related work.
Finally, we give conclusions and suggestions for future
work in Section 7.

2 Programming Model

The Olden model and its computation migration mech-
anism are described in detail in a prior paper [28]. In
this paper, we will provide only a brief overview of our
work.

Olden uses an SPMD programming model. Each pro-
cessor has an identical copy of the program, as well as a
local stack that is used to store procedure arguments, lo-
cal variables, and return addresses. Additionally, there
is a distributed heap of which each processor owns one
section. We view heap addresses as consisting of a pair
of a processor name and a local address (p,{). This
information is encoded in a single 32-bit word.

Olden takes as input a program written in a restricted
subset of C, with some additional Olden-specific anno-
tations. We require that programs do not take the ad-
dress of stack-allocated objects, which ensures that all
pointers point into the heap.! The major differences be-
tween our programming model and the standard sequen-
tial model are that the programmer explicitly chooses a
particular strategy to map the dynamic data structures
over the distributed heap, and annotates work that can
be done in parallel using futures [16].

In general, the computation will tend to follow the
data, so to get good performance, the programmer must
place related pieces of data on the same processor ex-
plicitly. Mapping the data to the processors is achieved
by including a processor number in each allocation re-
quest. Olden provides a library routine, ALLOC, that
allocates memory on a specified processor, and returns
a pointer that encodes both the processor name and the
local address of the allocated memory.

Additionally, Olden uses futures to indicate oppor-
tunities for parallelism. The programmer may mark a
procedure call as a futurecall, if it may be evaluated
safely in parallel with its parent context. A touch must
also be inserted by the programmer before the return
value 1s used. Olden’s implementation of futures is to
save the futurecall’s context (return continuation) on a
work list, and evaluate the body directly. New threads
are generated only if a migration occurs during the ex-
ecution of the body of the future. In this case, the now
idle processor will grab a continuation from the work list
and start executing it; this is called future stealing. If no
migration occurs, then the function will complete and
we avoid paying the overhead of creating a new thread.

1We do provide structure return values, which can be used to
handle many of the cases where & is needed.

The programmer-specified data layout heavily affects
the performance of the futures. If large groups of related
data are placed together, Olden will generate a small
number of large granularity tasks, and thus be more
efficient. A simple example of such a data layout for
a balanced tree is to distribute sub-trees at some fixed
depth equally among the processors. In this case, one
thread will be generated for each subtree at that depth.
These threads should have large granularity, and good
load balancing.

Given a suitably restricted C program using ALLOC
and futures as specified, the Olden compiler will gener-
ate an SPMD program that correctly handles references
to global heap pointers and calls the Olden library rou-
tines as needed. These routines manage the threads,
and perform the requisite communication between the
processors.

3 Remote Data Access

As previously mentioned, Olden provides two mecha-
nisms for accessing data on a remote processor: compu-
tation migration and software caching.

3.1 Computation migration

The basic idea of computation migration is that when a
thread executing on Processor P attempts to access a lo-
cation residing on Processor Q, the thread is migrated
from P to Q. To make this affordable, we send only
the portion of the thread’s state that is necessary for
the current procedure to complete execution: the regis-
ters, program counter, and current stack frame. When
it is time to return from the procedure, control is re-
turned to Processor P. To accomplish this, Q sets up
a special return stub to be used in place of the return
to the caller. The stub migrates the thread back to P
by sending a message containing the return address, re-
turn frame pointer, and the registers. Note that the
stack frame is not returned, as it is no longer needed.
Processor P can then complete the procedure return by
restarting the thread at the return address.

Before each heap reference that uses computation mi-
gration, the Olden compiler inserts an explicit check to
distinguish if the reference is local or remote and trans-
late the address. The local versus remote check extracts
the processor name from the heap address and checks it
against the local processor’s name. This check requires
five SPARC instructions; however, using standard data
flow techniques, the compiler can guarantee many of
these reference will be local, and will omit the test in
these cases [28]. For references guaranteed to be local,
only one instruction is required to translate the address.
After the check, local references are performed directly,

1024 hash buckets

|

0 2K
Vall%blls page

(321lines)

v

Figure 1: Olden’s software cache

while remote references are handled by a call to the mi-
gration routine from the Olden library.

3.2 Software Caching

The software caching mechanism is very similar to the
caching scheme in Blizzard-S [30]. Each processor uses
its local memory as a large, fully-associative, write-
through cache. As in Blizzard-S, we perform alloca-
tion on the page level, and perform transfers at the line
level.? The main difference between Olden’s cache and
that in Blizzard-S is that we do not rely on virtual mem-
ory support. Consequently, rather than using a very
large virtual table to translate addresses (pages of this
table are allocated on demand by trapping page faults),
we instead use a 1K hash table with a list of pages kept
in each bucket. Figure 1 shows the translation table.
Since entries are kept on a per-page basis, the chains in
each bucket will tend to be quite short (in our experi-
ence, the average chain length is approximately one).

The Olden compiler directly inserts software checks
before each heap reference that uses software caching.
The overhead of these checks is five instructions for local
addresses, and 29 instructions for a cache hit in the first
bucket in a chain. Again, however, the overhead can be
reduced to one instruction if the compiler can guaran-
tee the reference will be local. The table lookup itself is
very similar to that of Blizzard-S, with the addition of
searching the lists stored in the hash table. In addition
to checking the state bit for the line, as done in Blizzard-
S, our lookup also returns a tag used to translate the
address from a global to a local pointer (in Blizzard-S
this translation is performed automatically by the vir-
tual memory hardware). For both systems, in the event
that the page is not allocated or the line is not valid,
the appropriate allocation or transfer is performed by a
library routine.

Once we introduce a local cache at each processor,
we must provide a means to ensure that no processor
sees stale data. The most intuitive coherence model is
sequential consistency [22]. It may be summarized by

2In Olden, a page is 2K bytes, and a line 64 bytes.

Blocked distribution

0/™4 0 70™q1m™ 11 -

Cyclic distribution

O next 1 next 2 next 3 next O ,,,,,,, -

Figure 2: Two different list distributions. The numbers
in the boxes are processor numbers. Dotted arrows rep-
resent a sequence of list items.

stating that each processor performing a read on a lo-
cation sees the most recently completed write to that
location. Sequential consistency may be provided by
the underlying system, or guaranteed by having invali-
dations in the code.

Many systems, to reduce communication, implement
a relaxed consistency model, such as release consis-
tency [14]. Given sufficient synchronization, a program
running on such a system will have the same semantics
as it would running on a sequentially consistent one. A
model that requires no communication is called a local
knowledge scheme. Prior local knowledge schemes (e.g.,
[9, 11]) have relied on the compiler specifically insert-
ing code to invalidate the local cache. We implement
a local knowledge scheme in Olden using the runtime
system, by having each processor invalidate its entire
cache upon receiving a migration. Since the seman-
tics of futures require that concurrent threads in Olden
do not interfere, a program running under this scheme
provably will have the same semantics as the same pro-
gram running on a sequentially consistent system. (This
proof is outlined elsewhere [6] and relies on a mapping
from our model to release consistency.) We have made
a slight improvement to this scheme by noticing that on
returns we need only invalidate cached copies of lines
from processors whose memories have been written by
the returning thread. (Since the thread cannot read
data written by other concurrently executing threads,
it need only invalidate cache lines that it might have
updated while on a remote processor.) This scheme will
perform well when most shared data is written between
migrations. In a technical report [6], we describe two
other coherence mechanisms that we explored and com-
pare their performance to our local knowledge scheme.

4 Selecting a Mechanism

Given these two mechanisms, the compiler must decide,
for each pointer dereference, which it will choose for
accessing remote data. Our goal is to minimize the to-
tal communication cost over the entire program. Con-
sequently, although an individual thread migration is
substantially more expensive than performing a single

remote fetch (by a factor of about seven on the CM-5),
it may still be desirable to pay the cost of the migra-
tion, if moving the thread will convert many subsequent
references into local references. Consider a list of N ele-
ments, evenly divided among P processors (two possible
configurations are given in Figure 2). First suppose the
list items are distributed in a block fashion. A traversal
of this list will require Ng%l remote accesses if soft-
ware caching is used, but only P — 1 migrations if the
computation i1s allowed to follow the data. Hence, it
is better to use computation migration for such a data
layout. Caching, however, performs better when the list
items are distributed using a cyclic layout. In this case,
using computation migration will require N — 1 migra-
tions, whereas caching requires Ng%l remote accesses.

Olden uses a three-step process to select a mecha-
nism for each program point. First, the programmer
specifies path-affinities, which give hints to the compiler
regarding the layout of the data. Second, a data flow
analysis is used to find pointers that are traversing the
data structure in a regular manner. In each loop (either
iterative or recursive), at most one such variable is se-
lected for computation migration. Finally, interactions
between loops are considered, and additional variables
are marked for caching, if it is determined that using
computation migration for them may cause a bottle-
neck.

4.1 Path-affinity hints

Since the communication cost of a particular mechanism
for a particular program fragment is highly dependent
on the layout of the data, we allow the programmer to
provide a quantified hint to the compiler regarding the
layout of a recursive data structure. Each pointer field
of a structure may be marked with a path-affinity that
represents the probability that a path (i.e., a traversable
sequence of pointers in the data structure) along that
field will be local. For example, if a field, F, has a path-
affinity of 70%, that would indicate that a path along
field F in the data structure would be expected to cross
a processor boundary 30% of the time. Consider again
the examples given in Figure 2. In the blocked case,
the path-affinity of the next field is 1 — % (of the
N — 1 next pointers, P — 1 of them point to an object
on a different processor). In the cyclic case, the next
field has a path-affinity of zero (each next pointer is
to an object on a different processor). This example
also illustrates the intuition behind our heuristic’s use
of path-affinities. In general, computation migration is
preferable for high affinity paths, and software caching
for low affinity paths.

Note that the path-affinities supplied by the program-
mer are merely hints, and may be omitted (in which case

Update before

white (s) { Matrix. S t U

s = s->left;

t = t->right->left; a s |90

u = s->right; f
} t ot 63
(Assume path-affinity of left is 90 e
and right is 70). roou |70

Figure 3: A simple loop with induction variables

a default value is used), approximated, or even wrong
without affecting program correctness.

4.2 Update matrices

We want to be able to estimate how the program will, in
general, traverse its recursively-defined structures. To
accomplish this, we examine the loops and recursive
calls (hereafter referred to as control loops) checking how
pointers are updated in each iteration. We say that s is
updated by t along field F in a given loop, if the value
of s at the end of an iteration is the value of t from the
beginning of the iteration dereferenced through field F
(i.e., s'=t=>F). This notion extends directly to paths of
fields. Intuitively, variables that are updated by them-
selves in a control loop will traverse the data structure
in a regular fashion. We call such variables induction
variables. In Figure 3, s and t are induction variables
(since s’=s->left and t'=t->right->left), whereas u
is not (since its value cannot be written as a path from
its value in the previous iteration).

We summarize information on possible induction vari-
ables in an update matriz. The entry at location (s,t)
of the matrix is the path-affinity of the update, if s is up-
dated by t, and is blank otherwise. In Figure 3, since s
is updated by itself along the field 1eft, the entry (s,s)
in the update matrix is 90 (the affinity of the left field).
Induction variables are then simply those pointers with
entries along the diagonal (i.e., they have been updated
by themselves). In our example, the induction variables
s and t have entries on the diagonal. We will consider
only these for possible computation migration, as they
traverse the structure in a regular manner.

The update matrices may be computed using stan-
dard data-flow methods. (Note again that exact or con-
servative information is not needed, as errors in the up-
date matrices will not affect program correctness.) The
only complications are that variables may have multi-
ple updates or update paths of length greater than one.
There are three cases. The first is a join point in the
flow graph (e.g., at the end of an if-then statement).
Here we simply merge the two updates from each branch
by taking the average of their affinities. This corre-
sponds to assuming each branch is taken about half of
the time, and could be improved with better branch pre-
diction information. If the update does not appear in

(Assume path-affinity of leftis 90
andright is 70).

int TreeAdd (tree *t) {
if (t == NULL) return O;
el se
return TreeAdd(t->left)+
TreeAdd(t->right)+
t->val | after t |97

Update pef or e
Matrix t

Figure 4: TreeAdd

both branches, then rather than averaging the update,
we omit it. We do this because we wish to consider only
those updates that occur in every iteration of the loop,
thus guaranteeing that the updated variable is actually
traversing the structure.

Second, we must have a rule for multiple updates via
recursion. Consider the simple recursive program in Fig-
ure 4. Note that t has two updates, one corresponding
to each recursive call. The two recursive calls form a
control loop. In this case, we define the path-affinity of
the update as the probability that either of the updates
will be along a local path (since both are going to be
executed). If we assume the path-affinity of left is 90%
and right is 70%, then the probability that both are
remote is 3% (assuming independence). Consequently,
the path-affinity of the update of t because of the re-
cursive calls is 97%, the probability that at least one
will be local. We will further motivate this choice in
Section 4.3. Although it might appear that the merging
rule for if-then-else statements would apply to this
example, the recursive calls occur before the end of the
else branch. Consequently, only the rule for recursion
is used to compute the update of t in this control loop.

The final possiblity is an update path of length
greater than one (e.g., t=t->left->left). The path-
affinity is then simply the product of the path-affinities
of each field along the path.

So far, we have only discussed computing update ma-
trices intraprocedurally. A full interprocedural imple-
mentation would need to be able to compute paths gen-
erated by the return values of functions, and handle
control loops that span more than one procedure (e.g.,
a mutual recursion). Our preliminary implementation
performs only a limited amount of interprocedural anal-
ysis. In particular, we do not consider return values, or
analyze loops that span multiple procedures. Although
this preliminary implementation is sufficient for all of
our benchmarks, we plan to extend it to a full interpro-
cedural analysis using access path matrices [18].

4.3 The heuristic

Once the update matrices have been computed, the
heuristic uses a two-pass process to select between com-
putation migration and software caching. First, each
control loop is considered in isolation. Then, in the sec-

ond phase, we consider the interactions between nested
control loops, and possibly decide to do additional
caching. In addition to having the update matrix for
each control loop, we also need information regarding
whether or not the loop may be parallelized. In Olden,
the compiler checks for the presence of programmer-
inserted futures to determine when a control loop may
be parallelized.

In the first pass, for each control loop, we select the
induction variable whose update has the strongest path-
affinity. If a control loop has no induction variable, then
it will select computation migration for the same vari-
able as its parent (the smallest control loop enclosing
this one). If the path-affinity of the selected variable’s
update exceeds a certain threshhold, or the control loop
is parallelizable, then computation migration is chosen
for this variable; otherwise, dereferences of this variable
are cached. Dereferences of all other pointer variables
are cached. We select computation migration for par-
allelizable loops with path-affinities below the thresh-
hold because this mechanism allows us to generate new
threads. (As described in Section 2, in Olden, new
threads are only generated following a migration).

The threshhold, and the default path-affinity have
been set to 90%> and 70%, respectively. These val-
ues were chosen so that, by default, list traversals will
use caching, tree traversals will use computation migra-
tion, and tree searches will use caching. The averaging
method for recursive calls was also designed to obtain
this behavior. In our experience, these decisions provide
the best performance most of the time. In those cases
where the defaults are not appropriate, the programmer
can specify path-affinity hints. (We do not allow the
programmer to modify the threshhold, but the same ef-
fect can be obtained by modifying the path-affinities.)
We explicitly specified path-affinities in three of the ten
benchmarks (TSP, Perimeter, and MST) since the de-
fault affinity did not reflect the layout of the data struc-
ture, but in only one case (TSP) did it have a signficant
effect on performance.

Considering control loops in isolation does not yield
the best performance. Inside a parallel loop, it is
possible to generate a bottleneck by using compu-
tation migration. Consider the codes in Figure 5.
WalkAndTraverse is a procedure that for each list item
traverses the tree. If computation migration were cho-
sen for the tree traversal, the parallel threads for each
item in the list would be forced to serialize on their
accesses to the root of the tree, which becomes a bottle-
neck. In TraverseAndWalk, for each node in the tree, we
walk the list stored at that node. Since there is a differ-
ent list at each node of the tree, the parallel threads at
different tree nodes are not forced to serialize, and there

3Since the cost of a migration is about seven times that of a
cache miss, the break-even path-affinity is about 86%.

Traverse(tree *t) { wal k(list *1) {

if (t==NULL) return; while (1) {

el se { visit(l);
Traverse(t->left); | =l ->next; }
Traverse(t->right); }

} ! TraverseAndVal k(tree *t) {
if (t==NULL) return;
Wal kAndTr aver se el se {
(list *I, tree *t) { do in parallel {
for each body, b, in | Traver seAndWal k(t->left);
do in parallel { Traver seAndWal k(t->right);}

Traverse(t); }
} Wl k(t->list);

} }

Figure 5: Code examples with and without a bottleneck

is no bottleneck. In general, a bottleneck occurs when-
ever the initial value of a variable selected for migration
in an inner loop is the same over a large number of iter-
ations of the outer loop. Returning to the examples, in
WalkAndTraverse, t has the same value for each itera-
tion of the parallel for loop, while in TraverseAndWalk,
we assume t->1ist has a different value in each itera-
tion (i.e., at each node in the tree). Athough in general
this is a difficult aliasing problem, we do not need exact
or conservative information. If incorrect information is
used, the program will run correctly, but possibly more
slowly than if more precise information were available.
Our current approximation tests to see if the induction
variable for the inner loop is updated in the parent loop.
If so, we assume no bottleneck will occur; otherwise, we
use caching in the inner loop to avoid the possibility of
a bottleneck. Once the heuristic has analyzed the inter-
actions between loops, the selection process is complete.

5 Experimental Results

We have implemented Olden on a Thinking Machines
CM-5. The input to Olden is a C program annotated
with futures, touches, calls to Olden’s allocation rou-
tine, and data structure affinity information. Our sys-
tem consists of a compiler for the annotated C code
and a runtime system. The compiler is an adaptation
of lec [13], an ANST C compiler, that generates code
for testing for pointer locality and for handling futures
and touches. It also includes our heuristic for choosing
between thread migration and software caching. The
runtime system is written in a combination of C and
SPARC assembly code.

This section summarizes preliminary results from us-
ing Olden on a suite of ten benchmarks. Table 1 briefly
describes each benchmark. Table 2 lists the running
time of a sequential implementation plus speedup num-
bers for up to 32 processors for each benchmark. The
numbers reported represent averages over three runs
done in dedicated mode. We report whole program
times (W) for three benchmarks, Power, Barnes, and

Health, to allow for comparison with published results.
We report kernel times only for the rest to avoid hav-
ing their data structure building phases, which show
excellent speedup, skew the results. We use a true
sequential implementation compiled with our compiler
for computing speedups. The speedup numbers for the
one-processor version give a partial measure of Olden’s
overhead. Communication cost, and the cost of main-
taining the cache table, however, do not appear in the
one-processor version. Table 3 gives a breakdown of
Olden’s overhead on 32 processor runs. These numbers
were computed by counting the number of events on
each processor and multiplying by an experimentally
obtained estimate of their costs. Then, we take the
maximum over all processors. Since we do not do a
critical path analysis, the numbers give a lower bound
for the actual overhead. We also provide a speedup cal-
culation after subtracting out the measured overheads.
This gives a rough estimate of the available parallelism
in the algorithm as implemented in Olden.

The benchmarks fall into two categories: those that
use only migration (M) and those that use both mi-
gration and caching (M+C). TreeAdd, Power, TSP,
and MST use tree-based algorithms that have simple
data access patterns. Consequently, the Olden compiler
chooses to use migration alone to satisfy remote refer-
ences in these programs. TreeAdd and Power both have
good performance.* They do not show perfect speedup,
because of unavoidable overhead from testing pointers,
handling futures and touches, and managing the stack.
This overhead accounts for most of the gap between
our performance and perfect speedup. Also, tree-based
algorithms are not perfectly parallelizable as there is
insufficient parallelism near the top of the tree.

This is seen particularly in the results for TSP. It also
uses a divide-and-conquer algorithm on a tree, but un-
like TreeAdd and Power, its merge phase is non-trivial.
Each merge is sequential and walks through the sub-
trees, which requires a migration for each participat-
ing processor. Even after subtracting out the mea-
sured overhead, the speedup is only 17, as there are
fewer nodes than processors in the top four levels of the
tree (out of 15). TSP is one case where allowing the
programmer to specify path-affinity information yields
a marked increase in performance. Given the default
affinity, the heuristic will select caching for traversing
the subresults. Because the subresults have a high affin-
ity, much less communication is required using migra-
tion. By specifying this higher affinity value, we obtain
a speedup of 15.8 on 32 processors, as opposed to 6.4
with the default affinity.

4For Power, our efficiency on 64 processors is about 80%, com-
pared to 75% by Lumetta et al. [24]. The speedups we report
exceed those in prior work [28] due to an improved implementa-
tion of migration.

Table 1: Benchmark Descriptions

Benchmarks | Description Problem Size

TreeAdd Adds the values in a tree 1024K nodes

Power Solves the Power System Optimization problem [24] 10,000 customers

TSP Computes an estimate of the best hamiltonian circuit 32K cities
for the Traveling-salesman problem[20]

MST Computes the minimum spanning tree of a graph[4] 1K nodes

Bisort Sorts by creating two disjoint bitonic sequences and 128K integers
then merging them[5]

Voronoi Computes the Voronoi Diagram of a set of points[15] 64K points

EM3D Simulates the propagation electro-magnetic waves 40K nodes
in a 3D object[10]

Barnes-Hut | Solves the N-body problem using hierarchical methods [3] 8K bodies

Perimeter Computes the perimeter of a set of quad-tree encoded 4K x 4K image
raster images [29]

Health Simulates the Colombian health care system [23] 1365 villages

The performance for MST is poor and degrades
sharply as the number of processors increases, because
the number of migrations is O(NP). Caching would
not reduce the communication costs for this program,
because these migrations serve mostly as a mechanism
for synchronization. As can be seen in Table 3, the
communication overhead dominates, and we would ob-
tain a speedup of 25 on 32 processors if the overhead
were zero. We are currently exploring ways to reduce
communication overhead in these situations.

The remaining six benchmarks use a combination of
migration and software caching. Bisort performs two
sorts, one forward and one backward, on a randomly
generated set of integers. The data is stored in a binary
tree. The algorithm creates a bitonic sequence in each
subtree and then merges them to obtain the sorted re-
sult. The merge phase swaps subtrees to create two dis-
joint bitonic sequences and then performs two recursive
calls. Swapping the trees rather than pointers to the
trees is expensive, but helps maintain locality, which is
crucial to the performance of the second sort and sub-
sequent uses of the data. A pair of pointers is used
to search the subtrees during the merge phase. The
migration heuristic is designed to use software caching
for tree searches, so dereferences to these pointers use
caching. The tree swaps, on the other hand, use mi-
gration, because a large amount of data is touched on
each processor between migrations. Again there is a
large amount of communication overhead, but we also
observe a loss of parallelism from performing the tree
swaps to maintain locality.

Voronoi is a classic geometric divide-and-conquer al-
gorithm. The points are stored in a binary tree sorted
by x-coordinate. The algorithm computes the Voronoi
diagram of the two subtrees and then merges them. The
merge phase walks along the convex hull of the two sub-
diagrams, and adds edges to knit them together to form
the Voronoi diagram for the whole set. Walking along

the convex hull of a single subresult is best done with mi-
gration, but the merge phase walks along two subresults,
alternating between them in an irregular fashion. As a
result, the heuristic chooses to pin the computation on
the processor that owns the root of one of the subresults
and use software caching to bring remote subresults to
the computation. This version performs dramatically
better than an early version that used only migration
[28]. The heuristic does not make the optimal choice
in this situation; it would be better to traverse one of
the subresults while caching the other (such a version
has a speedup of over 12 on 32 processors). We are
exploring ways to improve the heuristic to handle this
case better. Even without the overhead, we do not ob-
tain perfect speedup, because as with TSP, many of the
merges leave some processors idle.

EM3D models the propagation of electromagnetic
waves in a 3D object, which is represented as a bipar-
tite graph containing E nodes and H nodes. At each time
step, new values for the E nodes are computed from a
weighted sum of the neighboring H nodes, and then the
same is done for the H nodes. The main computation
loop consists of walking down a list of nodes, reading the
values from the neighbors and using them to update the
current node. The heuristic chooses to use migration for
the nodes, because they have high locality, and to use
software caching for the edges, because they have low
locality. Our implementation performs comparably to
the ghost node implementation of Culler et al. [10], yet
does not require substantial modification to the sequen-
tial code.

Barnes-Hut® simulates the evolution of bodies in a
gravitational system. This computation is broken into
three pieces: building the tree used to represent the

5These results differ greatly from those given in [28]. Our
prior implementation created a copy of the tree on each processor,
whereas this implementation distributes the data structure. With
a distributed data structure, we are able to run simulations on
much larger systems.

Table 2: Results

Benchmarks Heuristic | Sequential Speedup by number of processors Migrate-only
choice | time (sec.) 1 2 4 8 16 32 speedup (32)

TreeAdd M 4.49 0.73 1.47 293 590 11.81 23.4

Power™” M 286.59 096 1.94 3.81 6.92 14.85 27.5

TSP M 43.35 0.95 1.92 3.70 6.70 10.08 15.8

MST M 9.81 0.96 1.36 2.20 3.43 4.56 5.14

Bisort M+C 31.41 0.73 1.35 2.29 3.52 4.92 6.33 6.13

Voronoi M+C 49.73 0.75 1.38 2.41 4.23 6.88 8.76 0.47

EM3D M+C 1.21 0.86 1.51 2.69 4.48 6.72 12.0 0.05

Barnes-Hut" M+C 555.79 0.74 1.42 3.00 5.29 8.13 11.2 <0.01

Perimeter M+C 2.47 0.86 1.70 3.37 6.09 9.86 14.1 2.96

Health"” M+C 34.19 0.73 1.47 2.93 572 11.09 16.42 16.52

W _ Whole program times

Table 3: 32 Processor Overhead

Benchmark | 32 proc. | Communication | Cache lookup | Pointer test | future/stack | Adjusted
time overhead overhead overhead overhead speedup
TreeAdd 0.19 <0.01 0.00 0.02 0.04 32
Power 10.42 0.34 0.00 0.02 0.40 30
TSP 2.74 0.04 0.00 0.09 0.04 17
MST 1.91 1.44 0.00 0.02 0.05 25
Bisort 4.96 1.00 <0.01 0.45 0.20 9
Voronoi 5.68 0.99 0.16 0.58 0.20 13
EM3D 0.10 0.04 <0.01 0.01 0.01 24
Barnes-Hut 49.62 3.95 0.22 0.04 1.98 13
Perimeter 0.18 0.03 <0.01 0.01 0.01 19
Health 2.08 0.57 <0.01 0.39 0.12 32

particles, calculating new accelerations for the particles
by walking the tree, and then computing the new posi-
tions of the particles. The migration heuristic chooses a
combination of migration and caching for the first two
phases: migration to send computation to the proces-
sor that owns the particle; caching to bring “distant”
tree nodes to the computation as needed. Migration is
chosen for the particles, because they have high locality.
Software caching is chosen for tree even though it has
high locality to avoid causing a bottleneck at its root.
Migration alone suffices for computing the new positions
of the particles, again because they have high locality.
Falsafi et al. [12] give results for six different imple-
mentations of this benchmark; our results using their
parameters (approximately 36 secs/iter) fall near the
middle of their range (from 15 to 80 secs/iter). In our
implementation, however, the tree building phase is se-
quential and starts to represent a substantial fraction of
the computation as the number of processors increases.
Factoring out this cost, we achieve a speedup of over
19 on 32 processors. If we omit the building phase and
subtract out overhead, the speedup for the remaining
two phases is approximately 27 on 32 processors. To
improve the performance of this and other programs,
we plan to investigate ways to parallelize building in-
cremental data structures in Olden.

Perimeter uses a quad-tree encoding of the raster
image. The algorithm superficially looks similar to
TreeAdd, but traverses the tree in a very different way
when computing the contribution of neighboring quad-
rants. The heuristic chooses to use caching when deter-
mining the neighbors of a quadrant, because they may
be far away in the tree.

Health simulates the Colombian health care system
[23] using a four-way tree. Each node of the tree rep-
resents a hospital, and at each node there is a list of
patients. At each timestep, the tree is traversed, and
patients, once assessed, are either treated or passed up
the tree to the parent. The heuristic, according to its
design, chooses migration for the tree traversal, and
caching to access remote items in the lists. Although
Health uses the same synchronization as MST, we ob-
tain better speedup as there is more work done in each
iteration. Again, subtracting the overhead yields a near
perfect speedup for this benchmark. The additional
overhead of maintaining the cache outweighs the bene-
fit of caching, since the number of patients at each node
that arrive from a remote processor is small (less than
two percent).

6 Related Work

Much work has been done on providing support for pro-
gramming parallel machines. In this section we describe
how our work relates to that of other groups. Since this
is a very active area of research, out of necessity we re-
strict our discussion to papers that seem most relevant.

Linda [7] provides a tuple-space mechanism for dis-
tributed processors to work on a shared linked struc-
tures. This model provides a global shared address
space, but no control over the actual assignment of data
to processors.

Emerald [19] and Amber [8] are object-oriented lan-
guages that employ thread and object migration mech-
anisms to improve locality. These languages provide
primitives for object location and mobility, and con-
structs to allow the programmer to indicate whether
the thread or the object(s) should move to satisfy an
invocation that references a remote object.

Prelude [17], is an explicitly parallel language that
provides a computation model based on threads and
objects. Annotations are added to a Prelude program
to specify which of several mechanisms — remote proce-
dure call, object migration, and computation migration
— should be used to implement an object or thread.
This project is very similar to Olden as they are devel-
oping compile-time/runtime techniques to select mech-
anisms to enhance locality; however, at this time, no
published results are available for comparison.

Orca[2] also provides an explicitly parallel program-
ming model based on threads and objects. Orca hides
the distribution of the data from the programmer, but
is designed to allow the compiler and runtime system to
implement shared objects efficiently. The Orca compiler
produces a summary of how shared objects are accessed
that is used by its runtime system to decide if a shared
object should be replicated, and if not, where it should
be stored. Operations on replicated and local objects
are processed locally; operations on remote objects are
handled using a remote procedure call to the processor
that owns the object.

Cid [26], a recently proposed extension to C, supports
a threads and locks model of parallelism. Cid threads
are lightweight and the thread creation mechanism al-
lows the programmer to name a specific processing ele-
ment on which the thread should be run. Unlike Olden,
Cid threads cannot migrate once they have begun ex-
ecution. This makes it awkward to take advantage of
data locality while traversing a structure iteratively. Cid
also provides a global object mechanism that is based
on global pointers. The programmer explicitly requests
access to a global object using one of several sharing
modes (for example, readonly) and is given a pointer to
a local copy in return. Cid’s global objects use implicit
locking and the runtime system maintains consistency.

One of Cid’s design goals is to use existing compilers.
While this makes it easier to port to new systems, it
does not allow it to take advantage of having access to
the code generator and compile-time information. For
example, once a Cid fork is inlined, the system can-
not change its mind. In Olden, an inlined future may
be stolen at a later time, should the processor become
idle. Additionally, Olden programs more closely resem-
ble their sequential C counterparts, as handling remote
references is done implicitly.

Split-C [10] is a parallel extension of C that provides a
global address space and maintains a clear concept of lo-
cality by providing both local and global pointers. Split-
C provides a variety of primitives to manipulate global
pointers efficiently. In a related piece of work, Lumetta
et al. [24] describe a global object space abstraction that
provides a way to decouple the description of an algo-
rithm from the description of an optimized layout of its
data structures.

Like Olden, Split-C is based on the modification of an
existing compiler. Split-C, however, adopts a program-
ming model where each processor has a single thread
executing the same program. While this is perhaps con-
venient for expressing array-based parallelism, recursive
programs must be written much more awkwardly.

7 Conclusions

We have presented a new mechanism for automatically
selecting between computation migration and caching
for explicitly parallel programs that use recursive dy-
namic data structures on message-passing machines.
We performed experiments on ten benchmarks using
our prototype implementation on the CM-5. Our re-
sults indicate that the heuristic makes good selections
with minimal programmer input, and that by combining
computation migration with software caching, we can
obtain significant improvements in performance over us-
ing migration alone.

The performance improvements gained by combin-
ing computation migration and software caching are not
limited to distributed memory machines. Programs run
on both networks of workstations and recently proposed
hybrid shared-memory/message-passing machines, such
as Alewife[l], FLASH[21], and Tempest/Typhoon[27],
could benefit from the combination. Implementations
of Olden for such machines would use different thresh-
olds for choosing between computation migration and
caching. The threshold for a network of workstations
would favor computation migration, because of the net-
work’s high communication latency, whereas the thresh-
old for machines with extensive hardware support would
favor caching.

We are in the process of porting Olden to the Tempest
interface. Our first Tempest implementation will run on

top of Blizzard on the CM-5. This will allow us to take
advantage of fine-grain access control to make pointer
tests cheaper and examine the tradeoff of this overhead
against the cost of processing interrupts on misses.

8 Acknowledgements

D. Hanson and C. Fraser wrote 1cc and answered many
questions about it. The National Supercomputing cen-
ters at the University of Illinois (NCSA) and Syra-
cuse University (NPAC) provided access to their CM-
bs. J. Barnes provided an implementation of Barnes-
Hut. S. Lumetta provided an implementation of Power.
J. Hummel suggested Voronoi Diagram as a possible ap-
plication; we obtained the initial implementation, writ-
ten by L. Guibas and J. Stolfi, from Netlib at ORNL.
J. Miller recommended TSP and provided an initial
implementation. G. Mackenzie implemented Health us-
ing Olden. The many suggestions made by D. Clark,
E. Felten, M. Raghavachari, J. Reppy, and the anony-
mous reviewers helped to improve this paper.

References

[1] A. Agarwal et al. The MIT Alewife machine: A large
scale distributed-memory multiprocessor. Technical Report

MIT/LCS TM-454, MIT, 1991.

[2] H. Bal, M. F. Kaashoek, and A. Tanenbaum. Orca: A lan-
guage for parallel programming of distributed systems. IEEE
Trans. on Software Engineering, 18(3):190-205, March 1992.

(3] J. Barnes and P. Hut. A hierarchical (0)(NlogN) force-
calculation algorithm. Nature, 324:446-449, December 1986.

[4] J. Bentley. A parallel algorithm for constructing minimum
spanning trees. J. of Algorithms, 1:51-59, 1980.

[5] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An op-
timal parallel algorithm for shared-memory machines. STA M
J. Comput., 18(2):216-228, 1989.

[6] M. Carlisle and A. Rogers. Software caching and computa-
tion migration in Olden. Technical Report PU-CS-TR 483-
95, Princeton University, 1995.

[7] N. Carriero, D. Gelernter, and J. Leichter. Distributed
data structures in Linda. In Conf. Record of the 13th An-
nual ACM Symp. on Principles of Programming Languages,
pages 236-242, January 1986.

[8] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Little-
field. The Amber system: Parallel programming on a net-
work of multiprocessors. In Proc. of the 12th ACM Symp.
on Principles of Programming Languages, pages 147-158,
December 1989.

[9] H. Cheong and A. Veidenbaum. A cache coherence scheme
with fast selective invalidation. In Proc. of the 15th Annual
Intl. Symp. on Computer Architecture, pages 299-307, June
1988.

[10] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel pro-
gramming in Split-C. In Proc. of Supercomputing 93, pages
262-273, 1993.

[11] E. Darnell and K. Kennedy. Cache coherence using local

knowledge. In Proc. of Supercomputing 93, pages 720-729,
1993.

(12]

(13]

(14]

(15]

[16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

B. Falsafi, A. Lebeck, S. Reinhardt, I. Schoinas, M. Hill,
J. Larus, A. Rogers, and D. Wood. Application-specific pro-
tocols for user-level shared memory. In Proc. of Supercom-
puting 94, 1994.

C. Fraser and D. Hanson. A Retargetable C' Compiler: De-
sign and Implementation. Benjamin/Cummings, Redwood
City, CA, 1995. TSBN 0-8053-1670-1.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In Proc.
of the 17th Annual Intl. Symp. on Computer Architecture,
pages 15-26, May 1990.

L. Guibas and J. Stolfi. General subdivisions and voronoi
diagrams. ACM Trans. on Graphics, 4(2):74-123, 1985.

R. H. Halstead Jr. Multilisp: A language for concurrent sym-
bolic computation. ACM Trans. on Programming Languages
and Systems, 7(4):501-538, October 1985.

W. Hsieh, P. Wang, and W. Weihl. Computation migration:
Enhancing locality for distributed-memory parallel systems.
In Proc. of the 4th ACM SIGPLAN Symp. on Principles &
Practice of Parallel Programming (PPoPP), pages 239-248,
1993.

J. Hummel, L. Hendren, and A. Nicolau. A general data
dependence test for dynamic, pointer-based data structures.
In Proc. of the SIGPLAN ’94 Conf. on Programming Lan-
guage Design and Implementation (PLDI), pages 218-229,
June 1994.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system. ACM Trans. on Computer
Systems, 6(1):109-133, 1988.

R. Karp. Probabilistic analysis of partitioning algorithms for
the traveling-salesman problem in the plane. Mathematics of
Operations Research, 2(3):209-224, August 1977.

J. Kuskin et al. The Stanford FLASH multiprocessor. In
Proc. of the 21st Annual Intl. Symp. on Computer Architec-
ture, pages 302-313, April 1994,

L. Lamport. How to make a multiprocessor that correctly ex-
ecutes multiprocess programs. TEEE Trans. on Computers,

C-28(9), September 1979,

G. Lomow, J. Cleary, B. Unger, and D. West. A performance
study of Time Warp. In SCS Multiconference on Distributed
Simulation, pages 50-55, February 1988.

S. Lumetta, L. Murphy, X. Li, D. Culler, and I. Khalil. De-
centralized optimal power pricing: The development of a par-
allel program. In Proc. of Supercomputing 93, pages 240—249,
1993.

E. Mohr, D. A. Kranz, and R. H. Halstead Jr. Lazy task cre-
ation: A technique for increasing the granularity of parallel
programs. IEEE Trans. on Parallel and Distributed Systems,
2(3):264-280, July 1991.

Rishiyur Nikhil. Cid: A parallel, “shared-memory” C for
distributed-memory machines. In Proc. of the 7th Intl
Workshop on Languages and Compilers for Parallel Com-
puting, Ithaca, NY, August 1994,

S. Reinhardt, J. Larus, and D. Wood. Tempest and Typhoon:
User-level shared memory. In Proc. of the 21st Annual Intl.
Symp. on Computer Architecture, pages 325—-337, April 1994.

A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Sup-
porting dynamic data structures on distributed memory ma-
chines. ACM Trans. on Programming Languages and Sys-
tems, 17(2), March 1995 (to appear).

H. Samet. Computing perimeters of regions in images repre-
sented by quadtrees. IEEE Trans. on Pattern Analysis and
Machine Intelligence, PAMI-3(6):683-687, November 1981.

(30]

(31]

I. Schoinas, B. Falsafi, A. Lebeck, S. Reinhardt, J. Larus, and
D. Wood. Fine-grain access control for distributed shared
memory. In Proc. of the 6th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems

(ASPLOS VI), pages 297-307, October 1994.
T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Ac-

tive messages: A mechanism for integrating communication
and computation. In Proc. of the 19th Annual Intl. Symp.
on Computer Architecture, pages 256-266, May 1992.

